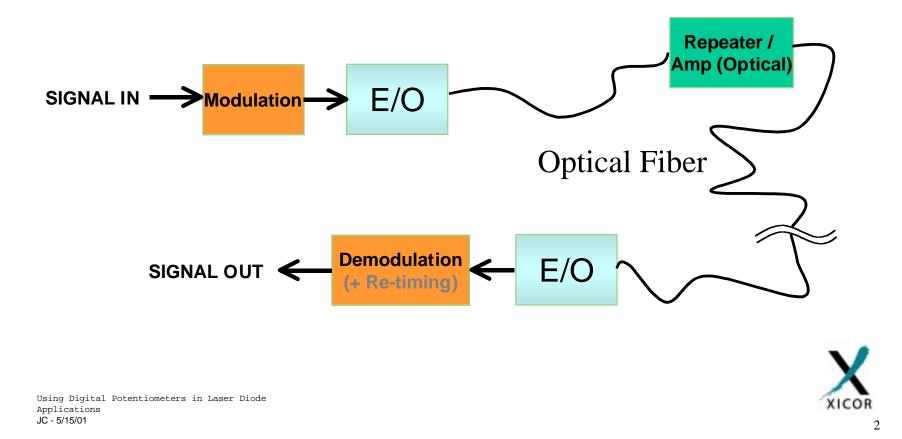
Using Digital Potentiometers in Laser Diode Applications



Using Digital Potentiometers in Laser Diode Applications $JC - 5/15/01 \label{eq:scalar}$

Introduction

- "Fiber Optic Communications"
 - Transmission of voice / data using light via Optical Fiber

Introduction

- Benefits of fiber optic communications •
 - Fiber optic cable has lower losses than metallic lines
 - Longer distances with fewer repeaters
 - Fiber optic cable has higher BW than metallic lines
 - Useful BW is in the order of 100s of GHz
 - More data / voice channels per cable
 - Fiber optic cable impervious to electrical interference
 - Security

Focus on Digital Communications

• System Standard Examples

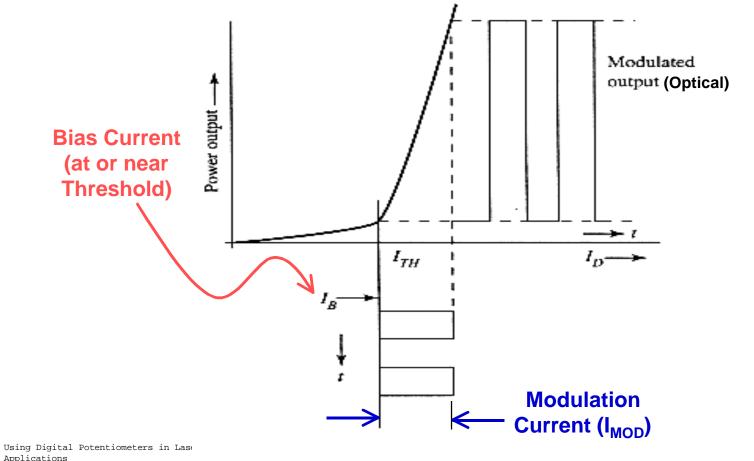
NAME	DATA RATE	APPLICATION / COMMENTS	
FOIRL / 10BaseFL	10Mb/s	Small LAN - Office 2km fiber runs	
Fast Ethernet / 100BaseFX	10Mb/s 100Mb/s	Medium LAN – Building 400m – 2km fiber runs	
Gigabit Ethernet (GE)	1Gb/s	Medium LAN – Building 25 – 500m fiber runs	
Fibre Channel Standard (FCS)	133Mb/s – 4Gb/s	High BW point-point serial link. Device-Station, Station-Station, SAN. 300m – 40km fiber runs	
FDDI	100Mb/s	MAN, WAN Up to 500 Stations per network. 2 – 40 km fiber runs	
ATM – with SONET/SDH Physical Layer	155Mb/s. 622Mb/s	(Medium - Long Haul) Telecom's, B-ISDN, SONET, SDH	
ATM – with other Physical Layers	Up to 2.5Gb/s	Supported by optical network Physical layers other than SONET / SDH.	

Focus on Digital Communications

Fiber optic comm's market trends / growth ullet

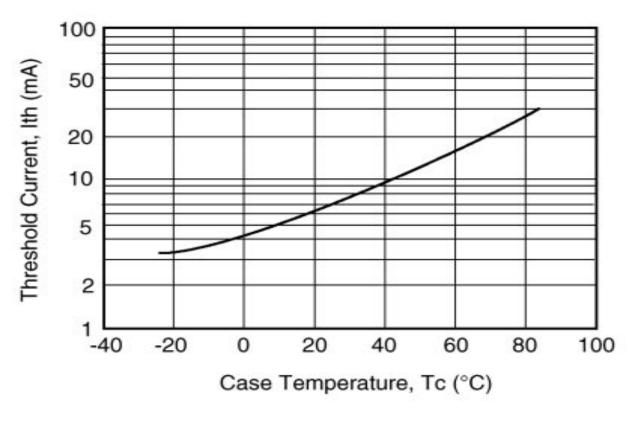
APPLICATION	Fiber Usage (%) 1993	Fiber Usage (%) 1999
Long haul terrestrial	52.3	38.2
Submarine	22.6	7.5
Subscriber Loop	14.7	35.3
MAN	4.3	6.8
LAN / SAN	6.1	12.2

- Demand increase driven by Internet, networking (WAN, MAN, SAN, etc).
- System BW increasing (Eg. WDM, D-WDM)
- Cost for fiber optic communications equipment decreasing

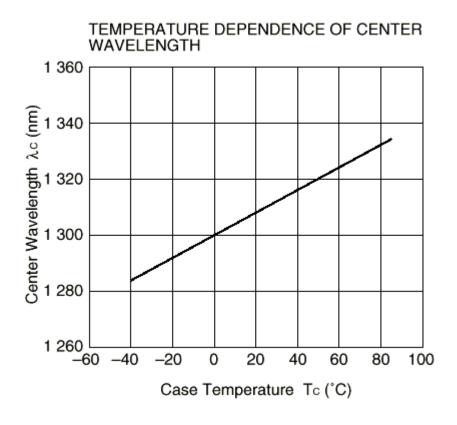

• Example System Block Diagram

XICOR

Laser Diode Fundamentals


- LD Modulation
 - Digital

Laser Diode Fundamentals


- LD Temperature Characteristics
 - Threshold Current

Laser Diode Fundamentals

- LD Temperature Characteristics
 - Optical Output

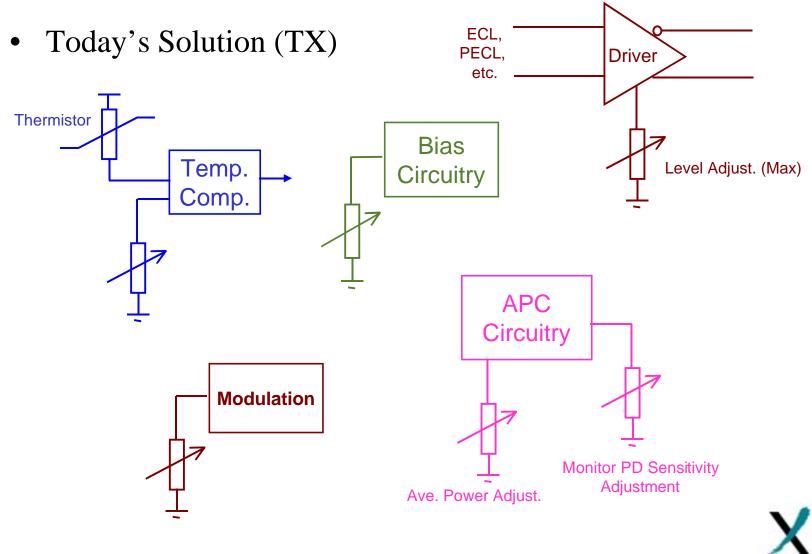
Low BER at RX requires (in part) high extinction ratio (E_t)

$$E_{t} = \frac{\text{Optical Power (1)}}{\text{Optical Power (0)}} [dB]$$

Switching speed of LD dependent on I_{B} and I_{MOD} ullet

$$\tau_{\rm delay} = \tau_{\rm th} \, n \frac{I_{MOD}}{I_{MOD} + I_B - I_{th}} \, \checkmark$$

Biasing and modulation can affect LD Chirp


\rightarrow Controlling I_B and I_{MOD} is very important

Using Digital Potentiometers in Laser Diode Applications JC - 5/15/01

- Laser diode control requirements
 - Set max value for I_{MOD}
 - Avoids damage to LD due to excessive current
 - Maximize extinction ratio
 - Set value for I_B
 - Minimize τ_{delay} , Laser Chirp, etc.
 - Maximize Extinction Ratio
 - Maintain constant temperature
 - Centre wavelength shifts with temperature.
 - APC maintains a constant *average* optical power output by varying I_{MOD} and / or I_{B} dynamically
 - Compensates for changes in LD characteristics due to temp. variations, aging, etc.
 - Maintains high extinction ratio
 - Minimize system BER

XICOR

- Laser diode driver solutions :
 - "Off the shelf" LD Driver ICs
 - Bias Control
 - Modulation Control
 - APC
 - Discrete implementations
 - Custom ASICs

\rightarrow LD DRIVERS REQUIRE SETTING OF **EXTERNAL VARIABLE RESISTANCES**

Using Digital Potentiometers in Laser Diode Applications JC - 5/15/01

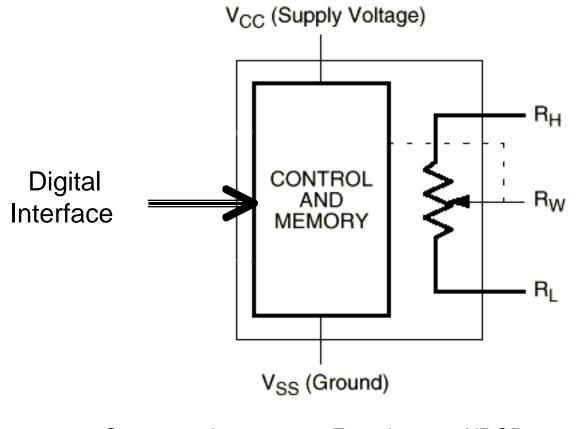
$\rightarrow \text{ LD DRIVERS REQUIRE SETTING OF} \\ \text{EXTERNAL VARIABLE RESISTANCES}$

Xicor

Digitally Controlled

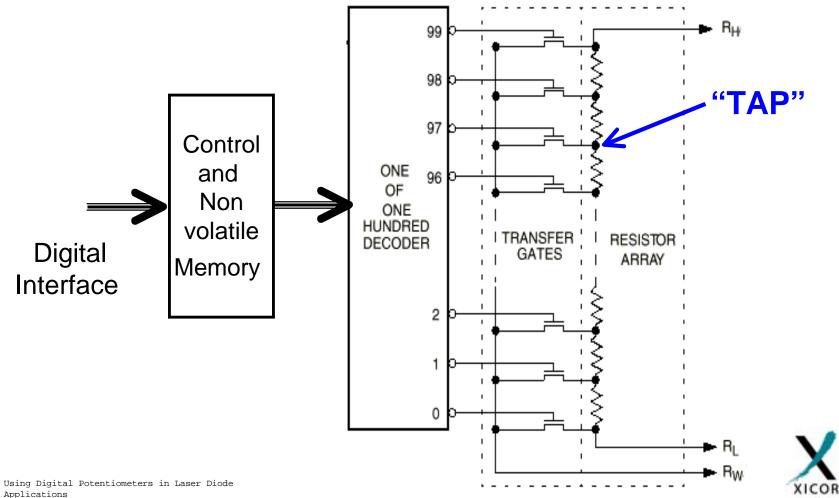
Potentiometers

(XDCPs[™])

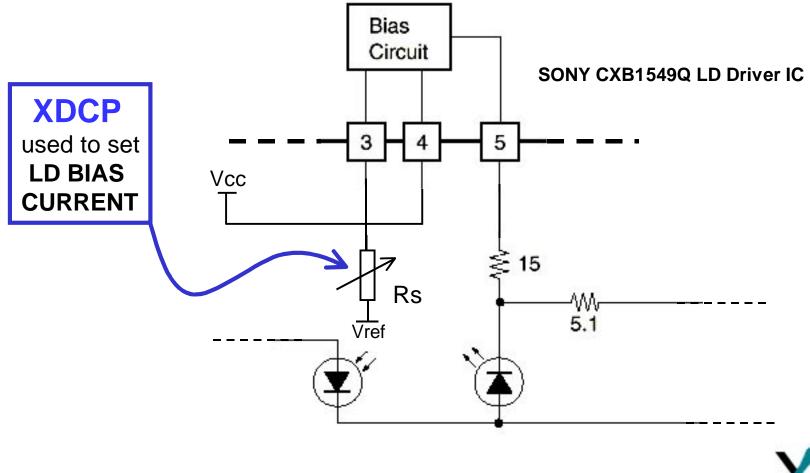

Using Digital Potentiometers in Laser Diode Applications JC-5/15/01

OLD

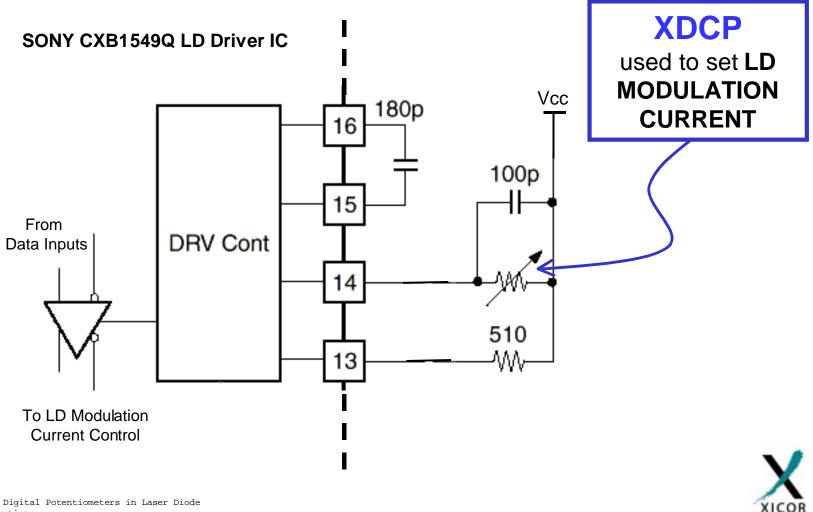
SCHOOL

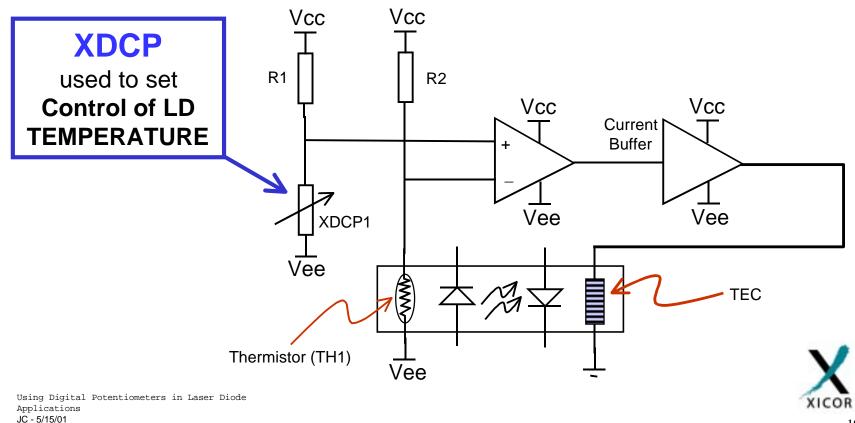

XICOR

What is a Xicor Digitally Controlled Potentiometer (XDCP)? ۲



See www.xicor.com..... For primer on XDCPs


• Internal XDCP Realization


• Example : XDCP to set LD Bias Current level

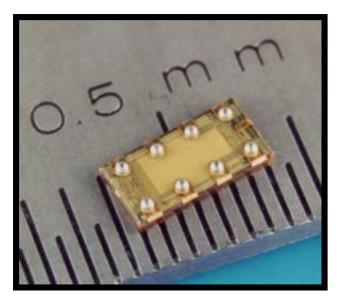
• Example : XDCP to set LD Modulation Current level

- Laser Diode Control Requirements
 - Temperature Control
 - Thermistor / Temperature Sensor
 - TEC (Peltier Cooler)

19

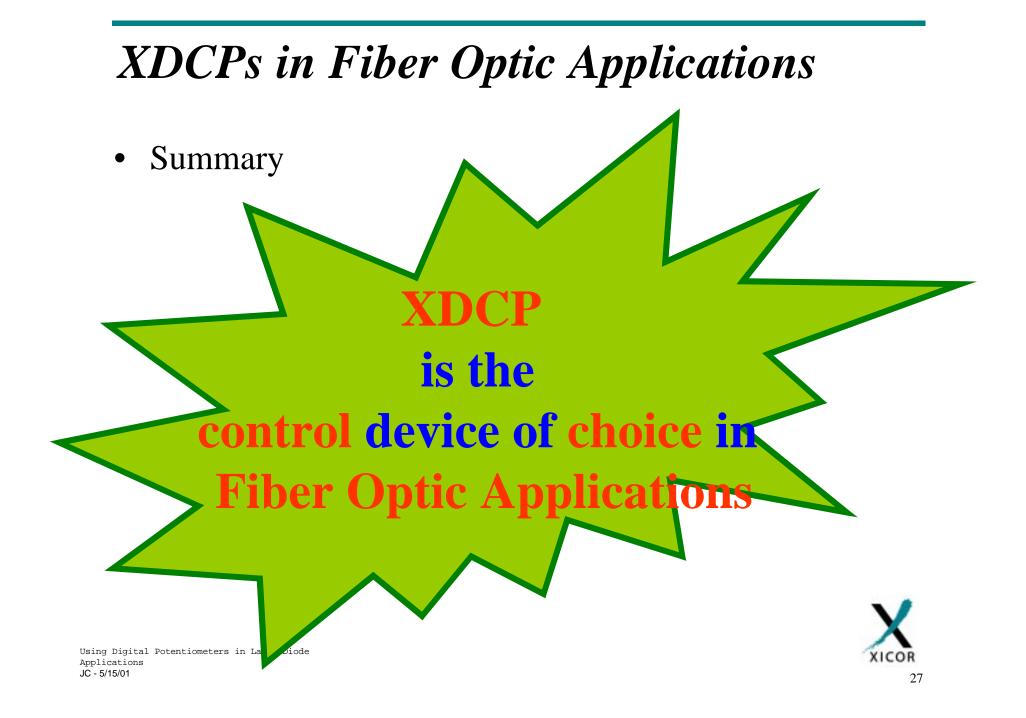
- XDCP used to set LD operating levels
 - Simple set-and-forget functionality
 - Nonvolatile memory and control eliminates need for uC
 - Eliminates need for redundant EEPROM
 - Reliability over mechanical solutions
 - No mechanical wear
 - Shock proof
 - Moisture proof
 - Dust proof

- XDCP used to set LD operating levels
 - Repeatable R settings
 - Standard semiconductor reliability
 - Tamper-proof
 - User cannot use simple screwdriver cannot change LD bias !
 - Low cost of ownership
 - Automated adjustment
 - Saves money in test and calibration
 - Fast adjustment
 - Eliminates human error


- Power supply requirements
 - Single supply devices
 - 2.7V to 5.5V operation
 - Other supply options
- Range of digital iInterfaces
 - -2-wire
 - SPI
 - 3-Wire UP/DOWN
 - PushPot

- Taps
 - 16, 32, 64, 100, 256 taps
 - 1024 taps (E.S. Available End Q2'00)
 - Single, dual and quad devices
- Temperature co-efficient (T/C)
 - Typical ± 300 ppm / °C
 - Methods exist to shift T/C dependency
 - Use as V divider \rightarrow Ratiometric T/C = ± 20 ppm / °C

- Packaging
 - DIP, SOIC
 - TSSOP, MSOP
 - Naked die
 - Xicor Ball Grid Array (XBGA)
 - Chip scale package with solder bumps
 - First XDCP products in XBGA being announced this month
 - Reduced board size



- Mixed Signal Devices
 - X9430 / X9438
 - Integrated dual XDCPs
 - Integrated dual op-amps
 - Fully user configurable
 - X9440 / X9448
 - Integrated dual XDCPs
 - Integrated dual comparator
 - Fully user configurable

- Summary •
 - Adjustment of LD control parameters are important:
 - Bias, modulation, temperature control (etc)
 - Adjustments often require external variable resistances
 - Xicor Digitally Controlled Potentiometers provide
 - Simplified system set-up
 - Higher reliability
 - Low cost of ownership

Abbreviations / Glossary

APC	Automatic Power Control	LAN	Local Area Network
ATM	Asynchronous Transfer Mode	LD	Laser Diode
BER	Bit Error Rate	MAN	Metropolitan Area Network
BW	Bandwidth	PD	Photodiode
D-WDM	Dense Wavelength Division Multiplexing	RX	Receiver
FCS	Fiber Channel Standard	SDH	Synchronous Digital Hierarchy
FOIRL	Fiber Optic Interconnect Repeater Loop	SONET	Synchronous Optical Network
GE	Gigabit Ethernet	TEC	Thermo-Electric Cooler
	5	ТХ	Transmitter
		WAN	Wide Area Network
		WDM	Wavelength Division Multiplexing

Chirp Sometimes known as "Frequency Chirp" is a phenomena whereby wavelength of optical output changes with time.

Bibliography

- Streetman B.G., 1990. *Solid State Electronic Components*. NJ, USA : Prentice Hall.
- DeCusatis C., Maas E., Clement D.P., Lasky R.C., 1998. *Handbook of Fiber Optic Data Communications*. London UK : Academic Press.
- Palais J.C., 1998. *Fiber Optic Communications 4th Ed.* N.J. USA : Prentice Hall International.
- Pedrotti K., *High Speed Circuits for Lightwave Communications*. International Journal of High Speed Electronics and Systems, Vol. 9, No. 2 (1998), pp 313-346.
- Yamashita K., Miyake T., *Cheap Optical Superhighway Will Reach Japanese Homes*. Nikkei Electronics Asia, October 1998, pp 35 40.

